机器学习-神经网络(后向传播)

symbols

L : 神经网络的层数

S_l : 第 l 层神经网络的神经元数

K :分类个数

10神经网络分类问题

代价函数

从逻辑回归算法中衍生到神经网络

每个 logistic regression algorithm 的代价函数 然后 K次输出 最后求和。

不对偏置单元(bias)进行正则化操作,即含X_0的项

10神经网络分类问题-代价函数

步骤

定义:误差项 delta(l)_j 表示第 l 层的第 j 的激活值与y之间的误差。

10神经网络分类问题-误差项

不严谨地说 :在忽略lambda(正则项)或lambda=0,误差项 = 相应的代价项的偏导 由此可以计算出所需参数。

综上:

▲是大写的delta

10神经网络反向传播步骤

更好地理解

delta(l)_j 其实是代价函数关于Z(l)__j的偏导,其值只计算隐藏单元而不计算偏置单元。

10神经网络分类问题-误差项

参数

矩阵与向量

公式中参数的形式均为向量,所以需要将矩阵转化为向量形式。

矩阵->向量: a = [ b1(:); b2(:); b3(:) ]

向量->矩阵: b1 = reshape(a(1:110),10,11); %向量前110个数组成10行11列的矩阵。

10神经网络分类问题-参数

梯度检测

(1)梯度估计

10神经网络分类问题-梯度估计

(2)J(θ)偏导数

10神经网络分类问题-θ偏导数

(3)检查J(θ)偏导数 是否等于 反向传播的导数,近似相等则反向传播正确实现

10神经网络分类问题-θ偏导数代码

综合检测步骤:

注意在正确之后,关闭梯度检测再进行训练分类器。

10神经网络分类问题-θ偏导数代码

θ随机初始化

防止 θ值相同,限制学习模型的特征输入

10神经网络分类问题-θ随机初始化

总结

训练神经网络

(1)选择网络架构: 输入特征项数,输出分类项 ,隐藏层(1个或者 多个但每层隐藏单元相同)

(2)随机初始化θ

(3)完成前向传播算法得到h_θ(x)

(4)完成代价函数 J(θ) 的计算

​ (5) 完成反向传播算法得到 J关于θ的偏导数

(6)遍历训练集,运行前向传播算法和反向传播算法,得到每层激活项a(l)与delta(l)

(7)梯度检查

(8)高级优化算法与反向传播算法结合计算min J.

编程作业

nnCostFunction.m

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
function [J grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
% [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% nn_params and need to be converted back into the weight matrices.
%
% The returned parameter grad should be a "unrolled" vector of the
% partial derivatives of the neural network.
%

% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));

Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));

% Setup some useful variables
m = size(X, 1);

% You need to return the following variables correctly
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));

% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
% following parts.
%

% Part 1: Feedforward the neural network and return the cost in the
% variable J. After implementing Part 1, you can verify that your
% cost function computation is correct by verifying the cost
% computed in ex4.m
%将y扩展为5000*10的0/1表示形式
expend = eye(num_labels);
%disp(expend);
disp("\n");
%disp(y(500:505,:));
disp("\n");
y = expend(y,:);
%disp(y(500:505,:));

one = ones(m,1);
a1 = [one,X];
z2 = Theta1 * a1' ;
a2 = sigmoid(z2);
a2 = [one,a2'];
z3 = a2 * Theta2';
h = sigmoid(z3);
J = sum(sum((y-1).*log(1-h) - y.*log(h))) / m ;
reg = lambda/2/m * (sum(sum(Theta1(:,2:end).^2)) + sum(sum(Theta2(:,2:end).^2)));
%reg = lambda/2/m *(sum(sum(Theta1.^2)) + sum(sum(Theta2.^2))
% - sum(sum(Theta1(:,1).^2)) + sum(sum(Theta2(:,1).^2)));
J = J + reg;

%
% Part 2: Implement the backpropagation algorithm to compute the gradients
% Theta1_grad and Theta2_grad. You should return the partial derivatives of
% the cost function with respect to Theta1 and Theta2 in Theta1_grad and
% Theta2_grad, respectively. After implementing Part 2, you can check
% that your implementation is correct by running checkNNGradients
%
% Note: The vector y passed into the function is a vector of labels
% containing values from 1..K. You need to map this vector into a
% binary vector of 1's and 0's to be used with the neural network
% cost function.
%
% Hint: We recommend implementing backpropagation using a for-loop
% over the training examples if you are implementing it for the
% first time.


delta3 = h - y;
delta2 = delta3 * Theta2 ;
delta2 = delta2(:,2:end);
delta2 = delta2 .* sigmoidGradient(z2)';

D1 = zeros(size(Theta1));
D2 = zeros(size(Theta2));
D1 = D1 + delta2' * a1;
D2 = D2 + delta3' * a2;


%
% Part 3: Implement regularization with the cost function and gradients.
%
% Hint: You can implement this around the code for
% backpropagation. That is, you can compute the gradients for
% the regularization separately and then add them to Theta1_grad
% and Theta2_grad from Part 2.
%


Theta1_grad = ( D1 + lambda * Theta1 ) / m;
Theta2_grad = ( D2 + lambda * Theta2 ) / m;
Theta1_grad(:,1) = Theta1_grad(:,1) - lambda / m * Theta1(:,1);
Theta2_grad(:,1) = Theta2_grad(:,1) - lambda / m * Theta2(:,1);

%找到每个X最大的估计数字,h归一化
% maxValue = max(h,[],2);
% h = (h >= maxValue);



% -------------------------------------------------------------

% =========================================================================

% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];


end

sigmoidGradient.m

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
function g = sigmoidGradient(z)
%SIGMOIDGRADIENT returns the gradient of the sigmoid function
%evaluated at z
% g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function
% evaluated at z. This should work regardless if z is a matrix or a
% vector. In particular, if z is a vector or matrix, you should return
% the gradient for each element.

g = zeros(size(z));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the gradient of the sigmoid function evaluated at
% each value of z (z can be a matrix, vector or scalar).

g = sigmoid(z) .* (1-sigmoid(z));


% =============================================================

end

randInitializeWeights.m

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
function W = randInitializeWeights(L_in, L_out)
%RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in
%incoming connections and L_out outgoing connections
% W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights
% of a layer with L_in incoming connections and L_out outgoing
% connections.
%
% Note that W should be set to a matrix of size(L_out, 1 + L_in) as
% the first column of W handles the "bias" terms
%

% You need to return the following variables correctly
W = zeros(L_out, 1 + L_in);

% ====================== YOUR CODE HERE ======================
% Instructions: Initialize W randomly so that we break the symmetry while
% training the neural network.
%
% Note: The first column of W corresponds to the parameters for the bias unit
%

epsilon_init = 0.12;
W = rand(L_out, 1 + L_in)*2*epsilon_init - epsilon_init;



% =========================================================================

end
---------------- 本文结束 ----------------

本文标题:机器学习-神经网络(后向传播)

文章作者:Pabebe

发布时间:2019年07月29日 - 12:34:41

最后更新:2020年06月16日 - 18:24:34

原始链接:https://pabebezz.github.io/article/336e6e71/

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。

0%