机器学习-支持向量机

机器学习最具有理论计算的部分,有点难

the Support Vector Machine (SVM)

监督学习算法

也称大间距分类器,因其设置了一个安全区域

在某些情况下比逻辑回归更适合构造非线性复杂分类器

13代价函数

优化目标: 最小化假设函数,一样是找到最优的θ

13代价函数含义

决策边界以最大的间距与训练集分开

13支持向量机决策边界的安全区域

C过大 对异常点敏感 会导致训练集与边界线之间的间距变小。

13决策边界

向量内积的性质

其中 P 是 投影,有符号的实数

|| u|| 向量u的欧几里长度 就是 我们所说的“向量长度”

13向量内积

运用于代价函数的计算

θ的方向与决策边界90°正交

θ_0代表决策边界与Y轴的截距

13决策边界的计算

为什么支持向量机会找到最大间距呢?

如图它会使得P最大,从而min||θ||,P就是训练集在θ上面的投影,

在这样的过程中便找到了最大间距~

13决策边界最大间距的原因

核函数

利用核函数K根据特征 X 和标记点 l 定义新的特征量 f

本质上 f是X与l的相似度

13核函数

高斯核函数

13高斯核函数

核函数与标记点共同定义复杂非线性决策边界

越大 特征量x从标记点l离开时变化速度越大

13σ的影响

同样不需要正则化θ_0

θT M θ 更多的是为了计算效率,稍微改变了正则化的结果

13计算细节

参数的选择

C过大 相当于逻辑回归中 λ过小,不正则化 ,易出现过拟合;反之易出现欠拟合。

σ^2 过大 f变化过于平滑,易出现欠拟合;反之f变化剧烈易出现过拟合。

13参数选择

实现步骤

n表示特征量的数量,m表示训练集的数量

可以在n X多 ,m少的情况 不要核函数,得到一条线性决策边界

可以在m X多 ,n少的情况 选择高斯核函数,得到一条复杂非线性决策边界

13实现步骤

在进行高斯核函数前不用特征归一化

13高斯核函数代码

13其他核函数

多类别分类

类似于 逻辑回归中的“一对多” ,选择概率最大的 z

13多类别分类

tips:

逻辑回归与不带核函数的支持向量机十分类似,效果略有不同。

神经网络适合大部分问题,但速度可能被限制

13算法比较

编程作业

gaussianKernel.m

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
function sim = gaussianKernel(x1, x2, sigma)
%RBFKERNEL returns a radial basis function kernel between x1 and x2
% sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 and x2
% and returns the value in sim

% Ensure that x1 and x2 are column vectors
x1 = x1(:); x2 = x2(:);

% You need to return the following variables correctly.
sim = 0;

% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the similarity between x1
% and x2 computed using a Gaussian kernel with bandwidth
% sigma
%
%

sim = exp(- sum((x1-x2).^2)/2/(sigma^2));

% =============================================================

end

dataset3Params.m

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
function [C, sigma] = dataset3Params(X, y, Xval, yval)
%DATASET3PARAMS returns your choice of C and sigma for Part 3 of the exercise
%where you select the optimal (C, sigma) learning parameters to use for SVM
%with RBF kernel
% [C, sigma] = DATASET3PARAMS(X, y, Xval, yval) returns your choice of C and
% sigma. You should complete this function to return the optimal C and
% sigma based on a cross-validation set.
%

% You need to return the following variables correctly.
C = 1;
sigma = 0.3;

% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the optimal C and sigma
% learning parameters found using the cross validation set.
% You can use svmPredict to predict the labels on the cross
% validation set. For example,
% predictions = svmPredict(model, Xval);
% will return the predictions on the cross validation set.
%
% Note: You can compute the prediction error using
% mean(double(predictions ~= yval))
%
C_multi = [0.01,0.03,0.1,0.3,1,3,10,30];
sigma_multi = [0.01,0.03,0.1,0.3,1,3,10,30];
min_err = Inf;

for i = 1:length(C_multi)
for j = 1:length(sigma_multi)
model= svmTrain(X, y, C_multi(i), @(x1, x2) gaussianKernel(x1, x2, sigma_multi(j)));
predictions = svmPredict(model, Xval);
err = mean(double(predictions ~= yval));
if min_err > err
C = C_multi(i);
sigma = sigma_multi(j);
min_err = err;
endif
endfor
endfor

% =========================================================================

end

processEmail.m

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
function word_indices = processEmail(email_contents)
%PROCESSEMAIL preprocesses a the body of an email and
%returns a list of word_indices
% word_indices = PROCESSEMAIL(email_contents) preprocesses
% the body of an email and returns a list of indices of the
% words contained in the email.
%

% Load Vocabulary
vocabList = getVocabList();

% Init return value
word_indices = [];

% ========================== Preprocess Email ===========================

% Find the Headers ( \n\n and remove )
% Uncomment the following lines if you are working with raw emails with the
% full headers

% hdrstart = strfind(email_contents, ([char(10) char(10)]));
% email_contents = email_contents(hdrstart(1):end);

% Lower case
email_contents = lower(email_contents);

% Strip all HTML
% Looks for any expression that starts with < and ends with > and replace
% and does not have any < or > in the tag it with a space
email_contents = regexprep(email_contents, '<[^<>]+>', ' ');

% Handle Numbers
% Look for one or more characters between 0-9
email_contents = regexprep(email_contents, '[0-9]+', 'number');

% Handle URLS
% Look for strings starting with http:// or https://
email_contents = regexprep(email_contents, ...
'(http|https)://[^\s]*', 'httpaddr');

% Handle Email Addresses
% Look for strings with @ in the middle
email_contents = regexprep(email_contents, '[^\s]+@[^\s]+', 'emailaddr');

% Handle $ sign
email_contents = regexprep(email_contents, '[$]+', 'dollar');


% ========================== Tokenize Email ===========================

% Output the email to screen as well
fprintf('\n==== Processed Email ====\n\n');

% Process file
l = 0;

while ~isempty(email_contents)

% Tokenize and also get rid of any punctuation
[str, email_contents] = ...
strtok(email_contents, ...
[' @$/#.-:&*+=[]?!(){},''">_<;%' char(10) char(13)]);

% Remove any non alphanumeric characters
str = regexprep(str, '[^a-zA-Z0-9]', '');

% Stem the word
% (the porterStemmer sometimes has issues, so we use a try catch block)
try str = porterStemmer(strtrim(str));
catch str = ''; continue;
end;

% Skip the word if it is too short
if length(str) < 1
continue;
end

% Look up the word in the dictionary and add to word_indices if
% found
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to add the index of str to
% word_indices if it is in the vocabulary. At this point
% of the code, you have a stemmed word from the email in
% the variable str. You should look up str in the
% vocabulary list (vocabList). If a match exists, you
% should add the index of the word to the word_indices
% vector. Concretely, if str = 'action', then you should
% look up the vocabulary list to find where in vocabList
% 'action' appears. For example, if vocabList{18} =
% 'action', then, you should add 18 to the word_indices
% vector (e.g., word_indices = [word_indices ; 18]; ).
%
% Note: vocabList{idx} returns a the word with index idx in the
% vocabulary list.
%
% Note: You can use strcmp(str1, str2) to compare two strings (str1 and
% str2). It will return 1 only if the two strings are equivalent.
%

for i = 1:length(vocabList)
if strcmp(str,vocabList(i)) == 1
word_indices = [word_indices ; i];
endif
endfor

% =============================================================


% Print to screen, ensuring that the output lines are not too long
if (l + length(str) + 1) > 78
fprintf('\n');
l = 0;
end
fprintf('%s ', str);
l = l + length(str) + 1;

end

% Print footer
fprintf('\n\n=========================\n');

end

emailFeatures.m

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
function x = emailFeatures(word_indices)
%EMAILFEATURES takes in a word_indices vector and produces a feature vector
%from the word indices
% x = EMAILFEATURES(word_indices) takes in a word_indices vector and
% produces a feature vector from the word indices.

% Total number of words in the dictionary
n = 1899;

% You need to return the following variables correctly.
x = zeros(n, 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return a feature vector for the
% given email (word_indices). To help make it easier to
% process the emails, we have have already pre-processed each
% email and converted each word in the email into an index in
% a fixed dictionary (of 1899 words). The variable
% word_indices contains the list of indices of the words
% which occur in one email.
%
% Concretely, if an email has the text:
%
% The quick brown fox jumped over the lazy dog.
%
% Then, the word_indices vector for this text might look
% like:
%
% 60 100 33 44 10 53 60 58 5
%
% where, we have mapped each word onto a number, for example:
%
% the -- 60
% quick -- 100
% ...
%
% (note: the above numbers are just an example and are not the
% actual mappings).
%
% Your task is take one such word_indices vector and construct
% a binary feature vector that indicates whether a particular
% word occurs in the email. That is, x(i) = 1 when word i
% is present in the email. Concretely, if the word 'the' (say,
% index 60) appears in the email, then x(60) = 1. The feature
% vector should look like:
%
% x = [ 0 0 0 0 1 0 0 0 ... 0 0 0 0 1 ... 0 0 0 1 0 ..];
%
%
for i=1:length(word_indices)

x(word_indices(i)) = 1;

endfor

% =========================================================================


end
---------------- 本文结束 ----------------

本文标题:机器学习-支持向量机

文章作者:Pabebe

发布时间:2019年07月29日 - 16:19:58

最后更新:2020年06月16日 - 18:24:34

原始链接:https://pabebezz.github.io/article/36b4f21c/

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。

0%