机器学习-评价方法

模型选择

60% 训练集 20%验证集 20%测试集

11模型选择-误差计算

训练集计算误差,利用交叉验证集选择维数,泛化能力

11模型选择-维数确定

偏差与方差

偏差(与训练集数据拟合程度),方差(与验证集数据拟合程度)

项数少 :高偏差,高方差

项数多:低偏差,高方差

11模型选择-维数方差偏差

正则化:防止过拟合

lambda 小 :低偏差,高方差

lambda大:高偏差,高方差

11模型选择-λ方差偏差

方差与偏差象征意义

方差与偏差在模型复杂度的相关性

方差与偏差外在表现

方差与偏差直观图

方差与偏差的解决方案

学习曲线

当模型高偏差时,加大训练集无用。

当模型高方差时,加大训练集可能有用。

11模型选择-措施

大型神经网络比小型神经网络性能要好

11模型选择-神经网络大小

设计复杂学习系统

  1. 从简单的算法开始
  2. 绘制学习曲线
  3. 误差分析(验证集)

误差评估

偏斜类 skewed class (其中一类占比巨大。不对称性分类)

查准率 = 真的 / 预测真的

召回率 = 真的 / (实际是真的,预测真或假)

11设计系统-查准率、召回率

平衡查准率与召回率

F_1的值

11设计系统-平衡查准率、召回率

综合:

16计算

机器学习数据

大量数据 适合 大量参数的模型

编程作业

linearRegCostFunction.m

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
%regression with multiple variables
% [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
% cost of using theta as the parameter for linear regression to fit the
% data points in X and y. Returns the cost in J and the gradient in grad

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost and gradient of regularized linear
% regression for a particular choice of theta.
%
% You should set J to the cost and grad to the gradient.
%


h = X * theta;
J = sum((h-y).^2)/2/m+ lambda/2/m*sum(theta(2:end).^2);
grad = X' * (h-y)/m + lambda/m*theta;
grad(1) = grad(1) - lambda/m*theta(1);

% =========================================================================

grad = grad(:);

end

learningCurve.m

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
function [error_train, error_val] = ...
learningCurve(X, y, Xval, yval, lambda)
%LEARNINGCURVE Generates the train and cross validation set errors needed
%to plot a learning curve
% [error_train, error_val] = ...
% LEARNINGCURVE(X, y, Xval, yval, lambda) returns the train and
% cross validation set errors for a learning curve. In particular,
% it returns two vectors of the same length - error_train and
% error_val. Then, error_train(i) contains the training error for
% i examples (and similarly for error_val(i)).
%
% In this function, you will compute the train and test errors for
% dataset sizes from 1 up to m. In practice, when working with larger
% datasets, you might want to do this in larger intervals.
%

% Number of training examples
m = size(X, 1);

% You need to return these values correctly
error_train = zeros(m, 1);
error_val = zeros(m, 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return training errors in
% error_train and the cross validation errors in error_val.
% i.e., error_train(i) and
% error_val(i) should give you the errors
% obtained after training on i examples.
%
% Note: You should evaluate the training error on the first i training
% examples (i.e., X(1:i, :) and y(1:i)).
%
% For the cross-validation error, you should instead evaluate on
% the _entire_ cross validation set (Xval and yval).
%
% Note: If you are using your cost function (linearRegCostFunction)
% to compute the training and cross validation error, you should
% call the function with the lambda argument set to 0.
% Do note that you will still need to use lambda when running
% the training to obtain the theta parameters.
%
% Hint: You can loop over the examples with the following:
%
% for i = 1:m
% % Compute train/cross validation errors using training examples
% % X(1:i, :) and y(1:i), storing the result in
% % error_train(i) and error_val(i)
% ....
%
% end
%

% ---------------------- Sample Solution ----------------------

for i = 1:m
theta = trainLinearReg(X(1:i, :), y(1:i),lambda);
error_train(i) = linearRegCostFunction(X(1:i, :), y(1:i),theta,0);
error_val(i) = linearRegCostFunction(Xval, yval,theta,0);
end

% -------------------------------------------------------------

% =========================================================================

end

polyFeatures.m

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
function [X_poly] = polyFeatures(X, p)
%POLYFEATURES Maps X (1D vector) into the p-th power
% [X_poly] = POLYFEATURES(X, p) takes a data matrix X (size m x 1) and
% maps each example into its polynomial features where
% X_poly(i, :) = [X(i) X(i).^2 X(i).^3 ... X(i).^p];
%


% You need to return the following variables correctly.
X_poly = zeros(numel(X), p);

% ====================== YOUR CODE HERE ======================
% Instructions: Given a vector X, return a matrix X_poly where the p-th
% column of X contains the values of X to the p-th power.
%
%

for i = 1:numel(X)
for j = 1:p
X_poly(i,j) = X(i).^j;
endfor

% =========================================================================

end

validationCurve.m

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
function [lambda_vec, error_train, error_val] = ...
validationCurve(X, y, Xval, yval)
%VALIDATIONCURVE Generate the train and validation errors needed to
%plot a validation curve that we can use to select lambda
% [lambda_vec, error_train, error_val] = ...
% VALIDATIONCURVE(X, y, Xval, yval) returns the train
% and validation errors (in error_train, error_val)
% for different values of lambda. You are given the training set (X,
% y) and validation set (Xval, yval).
%

% Selected values of lambda (you should not change this)
lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]';

% You need to return these variables correctly.
error_train = zeros(length(lambda_vec), 1);
error_val = zeros(length(lambda_vec), 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return training errors in
% error_train and the validation errors in error_val. The
% vector lambda_vec contains the different lambda parameters
% to use for each calculation of the errors, i.e,
% error_train(i), and error_val(i) should give
% you the errors obtained after training with
% lambda = lambda_vec(i)
%
% Note: You can loop over lambda_vec with the following:
%
% for i = 1:length(lambda_vec)
% lambda = lambda_vec(i);
% % Compute train / val errors when training linear
% % regression with regularization parameter lambda
% % You should store the result in error_train(i)
% % and error_val(i)
% ....
%
% end
%
%

for i = 1:length(lambda_vec)
lambda = lambda_vec(i);
theta = trainLinearReg(X, y,lambda);
error_train(i) = linearRegCostFunction(X, y,theta,0);
error_val(i) = linearRegCostFunction(Xval, yval,theta,0);
endfor


% =========================================================================

end
---------------- 本文结束 ----------------

本文标题:机器学习-评价方法

文章作者:Pabebe

发布时间:2019年07月29日 - 12:36:41

最后更新:2020年06月16日 - 18:24:34

原始链接:https://pabebezz.github.io/article/f46160db/

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。

0%